20). wg-blimp: an end-to-end analysis pipeline for whole genome bisulfite
uencing data, BMC Bioinformatics, 21, pp. 169.
W. and Simon, R. M. (2003). A random variance model for detection of
ferential gene expression in small microarray experiments, Bioinformatics, 19,
2448–2455.
07). Cancer outlier differential gene expression detection, Biostatistics, 8, pp.
–575.
rry, M. Shivakumar, S. and McLarty, J. (1995). Neural networks for full-scale
tein sequence classification: sequence encoding with singular value
omposion, Machine Learning, 21, pp. 177–193.
ang, X., He, Z. and Hou, L. (2019). Identifying candidate diagnostic markers
early stage of non-small cell lung cancer, PLoS One, 14, pp. e0225080.
n, Q., Su, S., Wang, X., Xu, W., Liu, Z., Zhu, Y., Wang, Q., Lu, L. and Jiang,
2020). The role of furin cleavage site in SARS-CoV-2 spike protein-mediated
mbrane fusion in the presence or absence of trypsin, Signal Transduction and
geted Therapy, 5, pp. 92.
Wong, L. (2021). PDR: a new genome assembly evaluation metric based on
etics concerns, Bioinformatics, (in press).
Kossenkov, A. V., Knecht, V. R., Showe, L. C., Ratcliffe, S. J., Montaner, L.
Tebas, P. and Collman, R. G. (2019). Evidence for persistent monocyte and
mune dysregulation after prolonged viral suppression despite normalization of
nocyte subsets, sCD14 and sCD163 in HIV-infected individuals, Pathogens and
munity, 4, pp. 324 – 362.
Huang, M., Li, S., Chen, J., Yang, Y., Qin, N., Huang, D. and Shu, J. (2020).
diomics model of magnetic resonance imaging for predicting pathological
ding and lymph node metastases of extrahepatic cholangiocarcinoma, Cancer
ters, 470, pp. 1–7.
H and Yang, Z. R. (2013). Prediction of heterogenous differential genes by
ecting outliers to a Gaussian tight cluster, BMC Bioinformatics, 14, pp. 81.
R. (2005). Mining SARS-CoV protease cleavage data using non-orthogonal
ision trees: a novel method for decisive template selection, Bioinformatics, 21,
2644–2650.
(2005b). Prediction of caspase cleavage sites using Bayesian bio-basis function
ral networks, Bioinformatics, 21, pp. 1831–1837.
. (2005c). Orthogonal kernel machine for the prediction of functional sites in
teins, IEEE Trans on Systems and Cybernetics B, 35, pp. 100–106.
R., Bullifent, H. L., Moore, K., Paszkiewicz, K., Saint, R. J., Southern, S. J.,
ampion, O. L., Senior, N. J., Sarkar-Tyson, M., Oyston, P. C., Atkins, T. P. and
ball, R. W. (2017). A noise trimming and positional significance of transposon
ertion system to identify essential genes in Yersinia pestis. Scientific Reports, 7,
41923.
R. and Berry, E. A. (2004). Reduced bio-basis function neural networks for
tease cleavage site prediction, Journal of Bioinformatics and Computational
logy, 2, pp. 511–531.